人工智能大幅提高開發電解質效率
富士通株式會社和日本理化學研究所最近公布,他們的聯合研究小組在材料設計中應用第一原理計算與人工智能技術,對全固態鋰離子電池的固
富士通株式會社和日本理化學研究所最近公布,他們的聯合研究小組在材料設計中應用第一原理計算與人工智能技術,對全固態鋰離子電池的固體電解質組成做了預測、合成與評價試驗,并進行了實際驗證。結果證明,即使在較少數據下,通過與人工智能方法結合,仍可高效地找出最佳材料組成,大幅提高材料開發速度。
迄今為止,材料的開發不得不依賴研究人員長期積累的經驗和敏銳的直覺,需要積累許多失敗的教訓才能成功。而第一原理計算是如果指定了材料的組成,基于量子力學可以預測的特征,在實驗之前即可預測新的高功能材料的最佳組成,從而大幅減少實驗失敗次數。但是第一原理計算的負荷非常巨大,材料各種組成需要多重計算,將會花費非常長的時間。
研究小組希望通過材料模擬、實驗和人工智能密切結合,解決材料開發中的問題,使材料開發時間大幅縮短,以期更容易地發現意想不到的組成和結晶結構,造出新的高功能材料。
此次研究小組使用人工智能方法之一的貝葉斯推斷法組合,控制第一原理計算的運算次數,對全固態鋰離子電池固體電解質的三種含有鋰的氧酸鹽合成化合物進行了預測。結果證實,該方法能在可實現的時間內,預測高鋰離子傳導率的最佳組合。同時在預測的組成附近也發現了其他組成的高鋰離子傳導率。
鋰離子傳導率是固態電解質材料重要的特征之一,是主導鋰電池充放電速度的因子。此次研究成果驗證了利用材料模擬和人工智能方法可高效開發不漏液、不起火的鋰離子電池,今后有望在電池、半導體以及磁性體等材料領域發揮巨大潛力。
責任編輯:繼電保護
免責聲明:本文僅代表作者個人觀點,與本站無關。其原創性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。
我要收藏
個贊
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網
-
新基建助推 數據中心建設將迎爆發期
2020-06-16數據中心,能源互聯網,電力新基建 -
泛在電力物聯網建設下看電網企業數據變現之路
2019-11-12泛在電力物聯網 -
泛在電力物聯網建設典型實踐案例
2019-10-15泛在電力物聯網案例
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業發展
-
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網 -
5G新基建助力智能電網發展
2020-06-125G,智能電網,配電網 -
從智能電網到智能城市