數據挖掘最常見的十種方法
挖掘技術,但是透過在線分析處理工具,使用者能更清楚的了解數據所隱藏的潛在意涵。如同一些視覺處理技術一般,透過圖表或圖形等方式顯現,對一般人而言,感覺會更友善。這樣的工具亦能輔助將數據轉變成信息的目標。
8、神經網絡(Neural Networks)
神經網絡是以重復學習的方法,將一串例子交與學習,使其歸納出一足以區分的樣式。若面對新的例證,神經網絡即可根據其過去學習的成果歸納后,推導出新的結果,乃屬于機器學習的一種。數據挖掘的相關問題也可采類神經學習的方式,其學習效果十分正確并可做預測功能。
9、判別分析(Discriminant Analysis)
當所遭遇問題它的因變量為定性(categorical),而自變量(預測變量)為定量(metric)時,判別分析為一非常適當之技術,通常應用在解決分類的問題上面。若因變量由兩個群體所構成,稱之為雙群體 —判別分析 (Two-Group Discriminant Analysis);若由多個群體構成,則稱之為多元判別分析(Multiple Discriminant Analysis;MDA)。
(1) 找出預測變量的線性組合,使組間變異相對于組內變異的比值為最大,而每一個線性組合與先前已經獲得的線性組合均不相關。
(2) 檢定各組的重心是否有差異。
(3) 找出哪些預測變量具有最大的區別能力。
(4) 根據新受試者的預測變量數值,將該受試者指派到某一群體。
10、羅吉斯回歸分析(Logistic Analysis)
當判別分析中群體不符合正態分布假設時,羅吉斯回歸分析是一個很好的替代方法。羅吉斯回歸分析并非預測事件(event)是否發生,而是預測該事件的機率。它將自變量與因變量的關系假定是S行的形狀,當自變量很小時,機率值接近為零;當自變量值慢慢增加時,機率值沿著曲線增加,增加到一定程度時,曲線協率開始減小,故機率值介于0與1之間。
責任編輯:廖生玨
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網
-
新基建助推 數據中心建設將迎爆發期
2020-06-16數據中心,能源互聯網,電力新基建 -
泛在電力物聯網建設下看電網企業數據變現之路
2019-11-12泛在電力物聯網 -
泛在電力物聯網建設典型實踐案例
2019-10-15泛在電力物聯網案例
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業發展
-
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網 -
5G新基建助力智能電網發展
2020-06-125G,智能電網,配電網 -
從智能電網到智能城市