www涩-www黄网站-www黄色-www黄色com-国产免费拍拍视频在线观看网站-国产免费怕怕免费视频观看

風(fēng)電+AI:實(shí)現(xiàn)齒輪箱故障預(yù)警,降低風(fēng)機(jī)嚴(yán)重故障風(fēng)險(xiǎn)

2018-03-09 09:59:27 大云網(wǎng)  點(diǎn)擊量: 評論 (0)
當(dāng)齒輪箱發(fā)生輕微故障時(shí),若人工定檢不能及時(shí)發(fā)現(xiàn),小故障會伴隨著風(fēng)機(jī)繼續(xù)運(yùn)轉(zhuǎn),增加齒輪箱負(fù)荷,最終導(dǎo)致卡死、串軸、斷裂等嚴(yán)重故障,給...

當(dāng)齒輪箱發(fā)生輕微故障時(shí),若人工定檢不能及時(shí)發(fā)現(xiàn),小故障會伴隨著風(fēng)機(jī)繼續(xù)運(yùn)轉(zhuǎn),增加齒輪箱負(fù)荷,最終導(dǎo)致卡死、串軸、斷裂等嚴(yán)重故障,給風(fēng)場帶來巨大的維修成本。

風(fēng)電+AI:實(shí)現(xiàn)齒輪箱故障預(yù)警,降低風(fēng)機(jī)嚴(yán)重故障風(fēng)險(xiǎn)

在政策驅(qū)動下,我國的風(fēng)電行業(yè)已由快速發(fā)展逐步轉(zhuǎn)向穩(wěn)定、市場化發(fā)展。相較于較水電、光伏等新能源,風(fēng)電行業(yè)的信息化較為成熟,因而具備較好的智能化條件和基礎(chǔ)。其中,基于風(fēng)場采集的SCADA數(shù)據(jù)進(jìn)行故障診斷、故障預(yù)測建模,已成為風(fēng)電行業(yè)的重要趨勢。

在典型的大部件中,風(fēng)力發(fā)電機(jī)齒輪箱,亦稱變速箱,作為將葉輪轉(zhuǎn)速提速為發(fā)電機(jī)所需轉(zhuǎn)速的重要部件,在雙饋式風(fēng)力發(fā)電機(jī)中應(yīng)用廣泛。

當(dāng)齒輪箱發(fā)生輕微故障時(shí),若人工定檢不能及時(shí)發(fā)現(xiàn),小故障會伴隨著風(fēng)機(jī)繼續(xù)運(yùn)轉(zhuǎn),增加齒輪箱負(fù)荷,最終導(dǎo)致卡死、串軸、斷裂等嚴(yán)重故障,給風(fēng)場帶來巨大的維修成本。

如果能通過數(shù)據(jù)及時(shí)發(fā)現(xiàn)齒輪箱的運(yùn)行異常并實(shí)時(shí)報(bào)警,對于降低風(fēng)機(jī)嚴(yán)重故障風(fēng)險(xiǎn),提高風(fēng)場發(fā)電效率具有重要意義。

文:天數(shù)潤科 劉楊

齒輪箱數(shù)據(jù)概述

風(fēng)力發(fā)電機(jī)的故障診斷、故障檢測方面,常使用的數(shù)據(jù)有SCADA、CMS等數(shù)據(jù)。

SCADA作為集控系統(tǒng)的組成部分,其數(shù)據(jù)存儲、提取、建模的過程較為容易。通常,對齒輪箱的測點(diǎn)包括齒輪箱油溫、齒輪箱振動、齒輪箱軸轉(zhuǎn)速、齒輪箱軸承溫度等。

CMS通過采集高頻振動數(shù)據(jù),結(jié)合時(shí)域與頻域的分析,給出齒輪箱振動異常的原因與是否需要停機(jī)維修的判斷。

本次建模使用的數(shù)據(jù)為10s級別的SCADA數(shù)據(jù),包含以上提及的SCADA數(shù)據(jù)特征。

建模思路

由于SCADA數(shù)據(jù)中齒輪箱的測點(diǎn)數(shù)較少,難以完全描述齒輪箱的運(yùn)行狀況,同時(shí)數(shù)據(jù)質(zhì)量不佳,部分風(fēng)機(jī)數(shù)據(jù)的時(shí)間間隔為12s,導(dǎo)致瞬時(shí)采樣點(diǎn)數(shù)據(jù)時(shí)間戳不一致。針對這種情況,采用數(shù)據(jù)聚合的方法,將不同時(shí)間間隔的數(shù)據(jù)統(tǒng)一聚合為2min級別數(shù)據(jù),提取每個(gè)特征在該段時(shí)間內(nèi)的平均值、最小值、最大值。

采用聚合方式提取的數(shù)據(jù),存在嚴(yán)重的線性相關(guān),使用傳統(tǒng)的統(tǒng)計(jì)學(xué)習(xí)方法(不包含樹模型)會引入較大的誤差,因此需要一層濾波,從原始的聚合數(shù)據(jù)中提取深層特征,同時(shí)需要確保這些特征可以較好地還原數(shù)據(jù)。因此模型使用降噪自編碼器作為自動進(jìn)行特征提取的工具。

按照2min的時(shí)間跨度聚合的數(shù)據(jù)較風(fēng)電行業(yè)常用的10min級別數(shù)據(jù),其時(shí)序特征較為明顯。尤其在溫度等特征方面,2min級別數(shù)據(jù)中描述了詳細(xì)溫度的變化特征,能夠較好的反應(yīng)風(fēng)機(jī)運(yùn)行過程中真實(shí)發(fā)生的工況。因此,在故障預(yù)測方面,采用基于LSTM架構(gòu)的模型,以有效預(yù)測齒輪箱健康狀況。

訓(xùn)練數(shù)據(jù)的標(biāo)注方面,風(fēng)場提供了齒輪箱故障發(fā)生的時(shí)間,將故障發(fā)生前一周的數(shù)據(jù)均標(biāo)記為故障數(shù)據(jù),同時(shí)選取一部分的齒輪箱未發(fā)生損壞的風(fēng)機(jī)數(shù)據(jù),以標(biāo)簽0作為正常風(fēng)機(jī)的標(biāo)注,用以訓(xùn)練模型。

首先,針對SCADA數(shù)據(jù),進(jìn)行按照時(shí)間聚合的數(shù)據(jù)操作;其次,構(gòu)建降噪編碼器模型,通過處理后的數(shù)據(jù)訓(xùn)練編碼部分和解碼部分,自動地使用神經(jīng)網(wǎng)絡(luò)提取2min級別數(shù)據(jù)的深層特征;最后,通過數(shù)據(jù)標(biāo)簽訓(xùn)練LSTM,輸入編碼后的結(jié)果,輸出為風(fēng)機(jī)在該時(shí)間段內(nèi)是否發(fā)生故障的預(yù)測結(jié)果。

所有的算法開發(fā)與部署皆基于SkyAXE高速運(yùn)算平臺開發(fā)。

1.png

模型算法說明

降噪自編碼器(Denoising AutoEncoder)是一種較為魯棒的自動特征提取模式,通過在編碼前對數(shù)據(jù)引入噪聲(通常為高斯噪聲)破壞原始的數(shù)據(jù)分布,再通過編碼-解碼過程還原未加入噪聲的數(shù)據(jù),實(shí)現(xiàn)類似濾波(filter)后自動提取特征的過程。

2.png

通過引入噪聲,破壞原始數(shù)據(jù)的標(biāo)準(zhǔn)分布后,再通過數(shù)據(jù)將其還原,模擬了人類對破損圖像自動補(bǔ)全的過程,充分利用數(shù)據(jù)間的相關(guān)性,自動提取數(shù)據(jù)的深層特征,在大批量數(shù)據(jù)的特征提取方面,其效果較傳統(tǒng)的PCA降維方法都有顯著地提升,且具有較高的魯棒性。反映于模型中,可看到其對聚合之后特征的還原效果較好,因此可將編碼器部分作為LSTM網(wǎng)絡(luò)的前半部分,對原始特征進(jìn)行預(yù)處理:

3.png

LSTM通過引入Cell的結(jié)構(gòu),可記憶在時(shí)間序列上有所間隔的數(shù)據(jù)特征,在自然語言處理、視頻分析、信號分析等方面已有大量成熟應(yīng)用。其結(jié)構(gòu)不在贅述。

模型架構(gòu)

模型整體架構(gòu)為降噪自編碼器的編碼部分后接LSTM網(wǎng)絡(luò)結(jié)構(gòu),構(gòu)建模型需要以下幾個(gè)步驟:

4.png

Step 1:訓(xùn)練自編碼器

由于降噪自編碼器屬于無監(jiān)督學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),即不需要外部的標(biāo)簽來訓(xùn)練。輸入輸出均為原始特征。訓(xùn)練中仍然采用批量訓(xùn)練方法,此時(shí)不需要關(guān)注聚合數(shù)據(jù)的故障與否,將全部數(shù)據(jù)進(jìn)行訓(xùn)練即可得到能夠自動提取深層特征的編碼器;

Step 2:構(gòu)建LSTM網(wǎng)絡(luò)

由于數(shù)據(jù)量較大,LSTM模型的堆疊Cell數(shù)量較多,網(wǎng)絡(luò)較深,容易產(chǎn)生梯度爆炸或梯度消失的問題。采用批標(biāo)準(zhǔn)化(Batch Normalization)對每一層的輸出進(jìn)行標(biāo)準(zhǔn)化,解決梯度傳播的問題。同時(shí),為了避免模型過擬合,在LSTM層和全連接層中,均使用了Dropout,降低過擬合的概率。構(gòu)建起多層的LSTM網(wǎng)絡(luò)后,接收編碼器提取的深層特征;

5.png

Step 3:訓(xùn)練模型

使用降噪編碼器提取的深層特征作為LSTM的數(shù)據(jù),故障與否作為標(biāo)簽,訓(xùn)練LSTM模型。從訓(xùn)練誤差的下降來看,模型具有較好的穩(wěn)健性,誤差可穩(wěn)定的下降:

6.png

Step 4:

模型測試

測試數(shù)據(jù)集為未用于訓(xùn)練的同風(fēng)場其他幾臺風(fēng)機(jī)數(shù)據(jù),運(yùn)行正常的風(fēng)機(jī)沒有報(bào)出故障,誤報(bào)率接近于0。而故障風(fēng)機(jī)主要呈現(xiàn)以下兩種故障模型:

(1)突發(fā)故障

可能是由于瞬時(shí)風(fēng)速過大,符合較大而導(dǎo)致的突發(fā)故障。模型在故障發(fā)生前并無給出明顯的征兆,在系統(tǒng)報(bào)警的較近時(shí)間段才報(bào)出異常,此時(shí)風(fēng)機(jī)可能已經(jīng)處于齒輪箱故障發(fā)生的臨界點(diǎn),需要緊急停機(jī)進(jìn)行維修;

7.png

(2)漸變故障

8.png

此類故障在發(fā)生前一段時(shí)間,模型已給出一些警報(bào),此時(shí)對齒輪箱進(jìn)行人工檢查或維修,可以避免因嚴(yán)重故障導(dǎo)致的齒輪箱徹底更換,降低維修成本,提高風(fēng)場的運(yùn)營效率。

總結(jié)

齒輪箱是雙饋式風(fēng)力發(fā)電機(jī)的重要部件,其發(fā)生嚴(yán)重故障后更換齒輪箱的維修成本極高。若能盡早發(fā)現(xiàn)齒輪箱的損壞,并進(jìn)行及時(shí)的維修,對于指導(dǎo)現(xiàn)場人員作業(yè),實(shí)現(xiàn)智能化運(yùn)營具有重要意義。

雖然模型有效地解決了該風(fēng)場的離線數(shù)據(jù)問題,但在實(shí)際部署過程中,還需要考慮數(shù)據(jù)傳輸?shù)馁|(zhì)量、速度等因素,對模型參數(shù)進(jìn)行不斷修正,以提高預(yù)警的準(zhǔn)確率。

隨著風(fēng)場信息化程度的不斷提高,智能化必然成為風(fēng)電行業(yè)未來的發(fā)展方向。引入AI的建模方法,將有助于提高模型的預(yù)測準(zhǔn)確率,降低誤報(bào)率,為業(yè)主帶來真實(shí)的經(jīng)濟(jì)價(jià)值。

 

大云網(wǎng)官方微信售電那點(diǎn)事兒

責(zé)任編輯:小琴

免責(zé)聲明:本文僅代表作者個(gè)人觀點(diǎn),與本站無關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實(shí)相關(guān)內(nèi)容。
我要收藏
個(gè)贊
?
主站蜘蛛池模板: 成人国产欧美精品一区二区 | 日本a级片免费看 | 手机在线观看亚洲国产精品 | 国产精品亚洲片夜色在线 | 免费观看久久 | 午夜精品久久久久久91 | 国产末成年女噜噜片 | 久久大陆 | 欧美一区二区日韩一区二区 | 日本黄区 | 国产精品激情丝袜美女 | 男女精品视频 | 国产偷国产偷亚洲高清午夜 | 欧美成人精品免费播放 | 国产免费一区二区三区在线 | 免费国产成人高清在线观看不卡 | 国内自产拍自a免费毛片 | 中国农村一级毛片 | 欧美人交性视频在线香蕉 | 久久福利青草狠狠午夜 | 欧美日韩在线播一区二区三区 | 国产三香港三韩国三级不卡 | 成人69| 能在线观看的一区二区三区 | 在线看国产 | 欧美 亚洲 中文字幕 | 久热香蕉精品视频在线播放 | 中文字幕亚洲综合久久 | u影一族亚洲精品欧美激情 va欧美 | 欧美日韩国产高清一区二区三区 | 超91精品手机国产在线 | 久久久久久久综合色一本 | 在线观看日本污污ww网站 | 欧美日本一道高清二区三区 | 精品一区二区三区在线成人 | 色涩五月天 | 国产2021中文天码字幕 | 欧美日韩在线观看一区 | 九九爱精品 | 国产欧美日韩精品第三区 | 国产高清国产专区国产精品 |