為什么能源互聯網要以電網為主
為什么能源互聯網要以電網為主
從國外的發展來看,對能源互聯網有三種理解:
一是以互聯網的開放對等理念和體系架構為指導,形成新型的能源網。這時候能源互聯網(Energy Internet)的本質是能源網。以美國的FREEDM為典型代表,效仿網絡技術的核心路由器,提出了能源路由器的概念并且進行了原型實現。
二是借助互聯網收集能源相關信息,分析決策后指導能源網的運行調度。這時候能源互聯網(Internet of Energy)的本質還是信息互聯網。以歐洲的e-Energy為典型代表,打造一個基于信息和通信技術的能源供應系統,連接能源供應鏈各個環節業務流程,實現示范應用形成能源需求和供給的互動。
三是將以上兩種理解混合在一起,兩種成分都有,以日本的數字電網、電力路由器為典型代表。
如何用電力電子裝置提高電力系統的穩定性
淺談電力電子裝置在電力系統中的應用
電力系統的任務是為人們日常生活、企業科研生產提供電力資源,而是社會經濟能否穩定發展的重要依托。電力電子裝置的應用貫穿電力系統的發電、配電、變電和輸電等各個階段,電力系統若想實現高可靠性、高穩定性和高效性,必須采用高度智能化的電力電子裝置。與此同時,傳統電力系統的發電方式往往使用不可再生能源,在造成嚴重的環境污染的同時能源的利用率低下,已不能滿足社會的需求,對電力系統進行改進勢在必行。在構建新型電力系統中必然會使用電具有較高科技水平的電力電子裝置。因此,研究電力電子裝置在電力系統中的應用具有重要的現實意義。
1 電力電子裝置和電力系統的發展
隨著大容量、遠距離電力資源傳輸的需求逐漸提高,電力系統勢必步入智能化、自動化發展的道路。目前,我國電力系統的智能化水平逐漸提升,在全國各地均可以使用電能,電力系統的規模位于世界前列。電力電子裝置作為電力系統的重要基礎,雖然起步較晚,但發展速度迅猛。電力電子裝置的不斷發展與改善同時也極大促進了電力網絡的迅速發展。較為突出的改進為電力能源傳輸介質由傳統的電纜傳輸轉變為光纖傳輸;關鍵技術壁壘由硬件設計轉變為軟件設計;裝置由傳統的半控型裝置逐步發展為全控型裝置,目前已經發展到復合型裝置;控制方法由傳統的模擬控制轉變為數字控制等等。然而,我國電力系統與發達國家相比仍存在著一定的差距,主要表現為智能化水平較低、科技含量較低、創新性技術應用較少等等。因此,我國電力行業的相關科技人才應該對電力電子裝置進行深入的科學研究并將其先進的應用到電力系統的構建中,從而促進我國電力行業以及社會經濟的進一步發展。
2.我國電力電子裝置在電力系統中的應用
2.1 發電階段
傳統的電力系統通常利用不可再生能源進行發電,資源有限且會造成一定的環境污染。新型電力系統應因地制宜,利用當地環保的可再生能源,如風能、勢能等,同時致力于進一步提高能源的利用效率,提高環保能源的使用率,本文將從風力發電、水力發電和太陽能發電三方面進行介紹電子電力裝置在發電中的應用。
2.1.1 風力發電
由于風力變化極快,需要電力電子裝置對風能進行整流、逆變后將其轉變為可供人使用、具有穩定電壓、頻率的電能資源,最為普遍的裝置為風力變流器。利用變流器中拓撲結構分層改變電能的容量和電壓,增加了風力發電的效率。
2.1.2 水力發電
水力發電裝置通過調節水庫的高低位置的變化通過水力勢能的改變進行發電。水力發電中發電機采用交流勵磁技術,極大地加快了發電的速度,其核心電力電子裝置為交流發電機組勵磁。在交流勵磁的控制系統原理簡單,利用交流頻率的改變直接調節對水壓及流量的大小,可以實現快速、準確的水力發電,有效改善了水力發電站的發電。效率
2.1.3太陽能發電
太陽能發電需要的電力電子裝置包括將太陽能轉變為電能的光伏陣列原件、處理不穩定電能的濾波器、變壓器、逆變器等裝置。目前,太陽能發電系統的應用還存在一定的不足,如光伏陣列存在多峰值問題,有待進一步進行深入研究。
2.2 儲能階段
由于可再生能源的產生具有季節性、實時性,同時生活生產中使用電能也存在高峰期和低谷期,這就要求進行電能的儲存,從而提高現有電力系統的穩定性和可靠性。本文將從目前在我國應用較為廣泛的電池儲能裝置、水力儲能裝置和風力儲能裝置幾個方面進行概述。
2.2.1 電池儲能裝置
我國對于電池儲能裝置的研究與其他其他儲能方式相比時間較早,可以將任意發電裝置產生的電力資源轉化為電池中的電能。其原理為利用小功率直流變換器是電池中的電流平穩;利用拓撲結構將電池集成實現電壓的高低和電流的變化;利用電壓型四象限變換器在實現功率的調節。利用電力電子裝置實現儲能的最優化、損耗的最小化的儲能系統。
2.2.2 水力儲能裝置
水力發電的儲能裝置一般采用抽水儲能,常見的方法為利用抽水蓄能機組中勵磁電流的頻率和幅值的轉換實現電力功率的轉換,從而實現電力供能中調峰填谷、備用緊急能源等不同的作用。
2.2.3 風力儲能裝置
風力儲能裝置利用壓縮空氣進行儲能,利用空氣壓縮機將剩余的電力資源用空氣的壓力進行存儲,電能不足時,將空氣的勢能轉化為電能進行發電。
2.3 輸電階段
電力系統若想在輸電領域中實現長距離、高容量和低損耗的電力傳輸,需要電力電子裝置進行協助降低電能的損耗,如換流器、變流器。在輸電過程中長距離、高容量的電力傳輸一旦遇到意外災害可能會造成嚴重的經濟損失,電力電子裝置能夠及時的發現傳輸電力過程中的異常狀況,根據具體的情況進行決策,以免產生重大的經濟損失和資源浪費。
2.4 智能電網
智能電網是高度自動化、高度智能化的電力資源傳輸網絡,利用自動化控制技術可對任意網絡節點進行監控,實現節點間電力資源的雙向流動。智能電網中采用功率變換器對用戶的功率進行調節。利用電力電子裝置的集成可實現電網中控制器通過通信系統進行協同工作,實現電網的自動化控制,增強智能電網的穩定性和可靠性。
2.5 提高電能利用率
由于自然中可再生資源如水力、風力或是太陽能并非是長時間供應的,但是對于電能的需求卻逐年增加,因此電力系統必須降低電能的損耗、提高電能的使用效率。其中,鏈式靜止同步補償器可以通過無功補償降低電壓的擾動、維護電力系統的穩定性;諧波治理裝置可以降低電網中的諧波,抑制不必要的能量損耗;動態電壓恢復器通過對電壓暫降進行補償,降低電壓引起的電力設備的損害,從而保障電力系統的穩定性和可靠性運行。
3 電力電子裝置發展的建議
目前,我國在電力電子裝置的應用方面已經取得了較大的突破,但是距離世界頂級的電力系統中電力電子裝置的應用還有一定的差距。針對電力資源的大量需求和電力系統改善的需要,電力電子裝置應該加強以下幾個方面的研究。首先,增強電力系統的智能化,通過電力電子裝置的一體化設計,實現電力系統的自動化控制。其次,在發電階段加強風力發電換流器的可靠性與太陽能發電中逆變器的穩定性。再次,研究其他可再生能源發電的可行性與適用性。最后,增加電力系統出現故障時的應急措施,通過不斷改進控制算法增強電力系統進行資源優化配置的能力,提高電力能源的使用效率。
4 總結
電力電子裝置是電力系統的重要基礎,在保障電力系統及時、準確和可靠運行等方面發揮舉足輕重的作用。換言之,電力電子裝置科技水平的高低直接影響電力系統自動化水平的高低,直接決定我國經濟的發展。因此,我國必須注重電力電子裝置的科研與開發,促進電力單位或企業與高校或其他科研單位的合作,致力于將先進的電力電子裝置應用于電力系統中,以便進一步滿足社會發展對電力資源日益增加的需求。
參考文獻:
[1] 姜建國.喬樹通.郜登科.電力電子裝置在電力系統中的應用[J].電力系統自動化,2014,3:2-5.
[2] 周孝信.陳樹勇.魯宗相.電網和電網技術發展的回顧與展望——試論三代電網[J].中國電機工程學報,2013,33(22):1-11.
[3] 國家電網公司“電網新技術前景研究”項目咨詢組.大規模儲能技術在電力系統中的應用前景分析[J].電力系統自動化,2013,37(1):3-8.

-
陜西開展2023年8月售電公司履約保函、保險滾動退補工作
2023-09-07售電公司履約保函 -
重慶公布新增注冊電力用戶名單
-
2家發電企業在山東電力交易中心注冊生效
2023-08-30山東電力交易中心
-
云南電力交易月報(2023年8月)
2023-08-25云南電力交易 -
2023年二季度山西電力市場信息:上半年省內交易累計成交電量129338億千瓦時
2023-08-11山西電力市場 -
廣東電力交易中心:2023年8月1日南方(以廣東起步)電力現貨市場結算運行日報